Как разработчика приборов для измерения параметров телевизионных сигналов меня часто спрашивают, как правильно интерпретировать результаты измерений. В настоящее время для специалистов, обслуживающих системы телеприема, доступно большое количество измерительных приборов, а значит, есть возможность количественно оценить качество телевизионных каналов, в том числе каналов с цифровой модуляцией. Однако при интерпретации измеренных величин до сих пор чувствуются неуверенность и сомнения. В этом материале я изложу свою точку зрения на значимость каждого из параметров, характеризующих качество телевизионного сигнала.
Mой взгляд на этот вопрос в основном формировался в процессе собственных разработок и производства телевизионных измерительных приборов. Но свою лепту внесли и консультации со специалистами всемирно известных компаний, производящих подобные приборы, и общение с операторами кабельных сетей.
Должен оговориться, что все нижеизложенное в первую очередь касается цифрового кабельного телевидения стандарта DVBC. Но в силу родственных связей между форматами DVB-вещания мои рассуждения с некоторыми оговорками можно отнести и к DVB-S, DVB-T, и др.
Пять основных параметров
Для начала рассмотрим набор измеряемых параметров цифровых каналов, доступных владельцам современных приборов. Как правило, эти приборы позволяют измерять пять параметров.
Первый из них — уровень сигнала в канале. Без сомнения, это один из важнейших параметров, характеризующих качество приема. Несмотря на то, что это самый понятный для специалистов параметр и его с достаточной точностью можно измерить даже приборами, предназначенными для аналоговых сигналов, при анализе результатов измерений иногда встречаются неправильные толкования и недопонимания.
Следующий параметр — MER (Modulation Error Ratio), или Коэффициент ошибок модуляции. По своей сути MER близок параметру SNR (сигнал/шум). В некоторых странах вместо параметра MER применяют EVM (Величина вектора ошибки), но по существу это одно и то же, выражаемое в разных единицах.
Третий параметр — BER (Bit Error Ratio), или Коэффициент битовых ошибок. Он характеризует частоту появления ошибочно восстановленных битов в демодулированном потоке данных и для стандарта DVB-C измеряется в двух точках: до декодера РидаСоломона и после него. Поэтому фактически это два параметра, которым часто присваивают названия preBER и postBER. Параметр postBER — та величина, которую пользователю иногда предъявляют как значение счетчика ошибочных пакетов за интервал наблюдения.
Последний параметр — констелляционная диаграмма, которая представляет собой график расположения символов на амплитуднофазовой плоскости, формируемый с накоплением за определенное время. Как правило, диаграмма рассматривается как некий качественный, а не количественный параметр, позволяющий оценить характер искажений входного радиосигнала.
Теперь можно приступить к более подробному анализу каждого из параметров на предмет их важности в оценке качества принимаемого цифрового сигнала.
Полезные советы
Избегайте скрутку провода в бухту, а также длинные участки с горизонтальным и наклонным положением кабеля, используйте качественный кабель в данных случаях.
Чтобы избежать наводок, кабель нужно размещать, подальше от силовых электрических проводов и избегать пересечений кабеля с силовыми линиями, а при пересечении делать его под прямым углом.
ТВ кабель проводить цельными кусками, если разрывов не избежать, то использовать специальные соединители с надежным контактом провода и экранированием, а не скрутки с изолентой.
BER vs MER
В специализированной литературе, журналах и на интернет-форумах часто разгораются дискуссии о значимости этих параметров; нередко можно встретить мнение, что самым важным и информативным параметром является MER. Сторонники этой точки зрения мотивируют ее тем, что зависимость величины MER от уровня шумов в полосе канала носит более пологий характер по сравнению с кривой BER, поэтому можно точнее оценить запас по устойчивому приему сигнала. В этом высказывании есть, конечно, большая доля истины. В самом деле, диапазон измерения MER, как правило, находится в пределах от 26-27 дБ до 38-42 дБ и выше (для модуляции QAM-256). Это позволяет оценить запас по качеству сигнала от порога синхронизации, когда демодулятор только-только начинает восстанавливать сигнал при значении preBER 1E-2…1E-3 . К тому же значение MER, как правило, более стабильно по сравнению с BER, особенно когда BER ниже 1E-7, что объясняется временем усреднения этих величин. К этому обстоятельству я вернусь немного позже.
Mux: MER-ы бывают пиковые и среднеквадратичные. Среднеквадратичные отражают усредненное значение за период измерения, а пиковые — максимальное. Если измеряется среднеквадратичное, то вполне возможны краткие развалы картинок принормальном MER-е, но переход на измерения пикового значения покажут эти сбои.
Mux: Достижимая точность измерения MER тем выше, чем ниже размерность модуляции измеряемого сигнала. Чем больше точек констелляции должен обрисовать ЦАП, тем меньше у него времени на каждую точку. Karlson2k: MER — хороший показатель, однако не единственный. Для приёмника
скорее важен BER или даже PER (BER после декодера Рида-Соломона). Иногда с одними тем же MER могут быть совсем разные BER.
В «обычных» условиях корреляция между MER и BER достаточно чёткая. Действительно, появление BER свидетельствует о подходе к границе (которая для цифры очень тонкая — здесь ещё есть, ещё чуть-чуть и уже совсем нет). Но как раз граница и важна. Тем не менее, в реальной жизни полно условий, когда чёткость корреляции начинает сбивается. Например — частотный сдвиг, из-за допплеровского эффекта (актуально для DVB-H) или по каким-то другим причинам. Иногда сбой может быть вызван «особенностями» передатчиков. Конечно, на BER сложно ориентироваться при измерениях, особенно «быстрых», и в большинстве случаев достаточно на MER. Но при любых важных измерениях без BER не обойтись.
А на практике для бытовых приёмников важен еще и уровень сигнала. К сожа- лению, разница в минимальном уровне, при котором бытовой приёмник цепляется за сигнал, доходит до 30-35 дБ у разных моделей даже от одного производителя. Штампуется же всё «подешевле». То есть на что ориентироваться при постройке
сети — вопрос ещё тот .
Самый важный параметр
Тем не менее, берусь утверждать, что самый важный параметр из всех измеряемых для цифрового сигнала — BER, а точнее — postBER. Ведь уверенно заявлять, что восстановление потока, полученного за определенный период, было абсолютным, можно только в случае, если postBER за это время оказался равным нулю. В реальности значение для postBER, равное 1E10…1E11, говорит о частоте появления ошибки в восстановленном потоке данных не более 2…20 бит в час. Такой прием можно характеризовать как безошибочный. В соответствии с научной терминологией соответствующий поток данных можно назвать «квазисвободным от ошибок».
У BER есть, правда, один недостаток — невозможность оценить запас сигнала по качеству, за счет которого можно уверенно принимать и восстанавливать цифровой поток в течение длительного времени. В пороговой ситуации уменьшение значения MER для одного канала всего на 1-2 дБ может изменить ситуацию от полного восстановления данных к полной невозможности приема сигнала на этом канале и скачкообразному изменению значения BER.
Но, тем не менее, важность этого параметра весьма высока. Особенно он может быть полезен сторонникам контроля телевизионного изображения. Параметр postBER полностью заменяет контроль картинки за исключением того случая, когда в структуре транспортного потока MPEG присутствуют ошибки, приводящие к артефактам изображения. Но они не всегда приводят к дефектам картинки, заметным на экране монитора, или же искажениям звукового сопровождения, да и вообще появляются достаточно редко.
Зато postBER по сравнению с контролем изображения имеет несколько преимуществ. Во-первых, он показывает общее количество ошибок в транспортном потоке, а не на одной программе, как при контроле картинки.
Во-вторых, вычислению postBER никак не препятствует шифровка потоков системами условного доступа. И для открытых, и для закрытых каналов он вычисляется одинаково.
И, в-третьих, postBER более чувствителен к ошибкам: счетчик невосстановленных пакетов будет неумолимо увеличиваться с каждой следующей ошибкой, хотя «битый» пакет может принадлежать другой программе или вообще не оказывать влияния на картинку или звук и, как результат, будет пропущен при визуальном контроле.
С точки зрения оценки запаса по качеству сигнала более информативен, конечно, preBER. Общеизвестно, что пороговое значение preBER, равное 2E-4, дает возможность восстанавливать данные до требуемых 1E-10…1E-11 значения postBER. Но это как раз тот случай, когда мы находимся на границе между уверенным приемом и отсутствием возможности восстановить сигнал при ухудшении значения MER. Если при измерении параметров мы получаем значение preBER, скажем, 1E-6, это уже указывает на наличие некоего запаса, позволяющего нам быть увереннее в будущем.
Время измерения BER
Большинство приборов для измерения параметров сигналов с цифровой модуляцией имеют нижнюю границу диапазона измерения параметра BER 1E-8 или 1E-9, реже — 1E-10, 1E-11. Совершенно естественно, что пользователи приборов хотят иметь границу как можно ниже, а результат измерения получать как можно быстрее. Давайте посчитаем: если мы используем модуляцию QAM-256 и символьную скорость 6,9 Мбод, то битовая скорость на входе декодера РидаСоломона будет составлять 6,9*8=55,2 Мбит/с. Если вероятность появления ошибки 1E-8, то для измерения этой величины нам надо накопить 108 бит потока данных, из которых один бит будет ошибочным. А накапливать мы их будем в течение 108/55,2×106 = 1,8 с. То есть один неправильно декодированный бит будет появляться, в среднем, раз в две секунды.
Результат, измеренный за этот промежуток времени, будет, конечно, весьма неточным. Для уменьшения случайной погрешности необходимо его усреднить хотя бы за 10 периодов измерения, то есть за 18 секунд. Если мы захотим измерить BER с нижней границей 1E-9, то для этого нам потребуется в 10 раз больше времени: 180 секунд или 3 минуты, а для получения достоверного результата 1E-11 мы должны ждать пять часов! Если использовать модуляцию более низкого порядка или более низкую символьную скорость, время измерения увеличится еще больше
Преимущества MER
MER (Modulation Error Ratio) — это ошибка модуляции, характеризующая отклонение реального символа от местоположения символа идеального на констелляционной диаграмме1.
По сравнению с BER параметр MER предоставляет более оперативную информацию о сигнале. Как я уже упоминал, MER является подобием параметра отношения сигнал/шум, хотя и учитывает большее число факторов, искажающих исходный радиосигнал. Значение параметра так же усредняется по времени, как и все величины, связанные с измерением мощности, но его измерение производится для каждого символа и, учитывая большие символьные скорости, накопление за одну секунду дает достаточно достоверный результат.
Вторым достоинством параметра MER является возможность его измерения с нормированной точностью. Большинство современных микросхем декодеров, на основе которых производятся приборы, позволяют вычислять MER аппаратно или на основе величин амплитуд векторов I и Q.
Под аппаратным вычислением я имею в виду возможность получения среднеквадратичного значения вектора ошибки из одного из внутренних регистров демодулятора. Во всяком случае производители микросхем утверждают, что это именно оно, и измерения, в принципе, это подтверждают. А зная среднеквадратичное значение вектора ошибки, вычислить MER уже несложно.
Использование значений амплитуд векторов квадратур для этих целей часто менее пригодно, потому что от микросхемы можно получить лишь 7 или 8 двоичных разрядов амплитуды QIвекторов. В результате динамический диапазон расчетного значения MER получается весьма низок. А разрядность регистра ошибки, напротив, часто бывает 10-, а то и 16-битная.
Погрешность измерения, связанную с неидеальными параметрами тюнера и демодулятора, можно скорректировать, имея источник сигнала с калиброванным параметром сигнал/шум. Калибровка производится для входного сигнала с добавлением только белого шума, но такой метод, тем не менее, дает весьма хороший результат.
Поэтому погрешность параметра MER для многих приборов является нормированной величиной в отличие от BER. Точность измерения BER зависит от качества приемника и демодулятора прибора, и корректировать ее невозможно. В результате измерение BER разными приборами дает близкие значения при плохом и заметно различающиеся при хорошем (при больших значениях MER).
То есть более качественный прибор показывает более низкие (более близкие к реальным) значения BER. Способность измерять низкие значения BER является хорошим индикатором качества измерительного прибора.
Если это так, возникает вопрос: «А не достаточно ли измерять один только MER для оценки качества принимаемого сигнала, ведь время измерения небольшое. Параметр предоставляет комплексную и точную информацию. С этим можно согласиться, но только в одном случае, когда к исходному сигналу примешивается только белый гауссовский шум. Как показывают практика и тестовое моделирование, при выполнении этого условия MER совпадает с SNR, и поэтому в данном случае для определения значений preBER и postBER можно воспользоваться кривыми зависимости BER от отношения SNR входного сигнала.
Усилитель сигнала цифрового ТВ своими руками – схема
Прежде чем рассмотрим инструкцию по сбору собственного усилителя, изучим, использующиеся типы антенн в настоящее время:
- Телскопические. Другое название – стержневая. Отличается несложным изготовлением и используется на расстоянии до 5 км от вышки. Обладает круговой поляризацией, что позволяет обнаруживать различные радиоволны.
- Патч-антенны. В основном при изготовлении используют прямоугольные элементы, защищенных пластиком. Имеет вертикальную и горизонтальную поляризацию. Главным достоинством является повышенный показатель КУ и способность принять переотраженку.
- Волновой канал. Является самым используемым вариантом. Представляет собой конструкцию из директоров, рефлекторов и вибраторов, располагающихся на траверсе. Волновой канал часто размещается на улице, можно найти модели с отражателями. Также их часто оборудуют усилителями и фильтрами.
- Зигзагообразные. Основным плюсом является простота сборки и возможность принять отраженку. То есть, зигзагообразные антенны можно с легкостью собрать в домашних условиях.
Почему не работает Ютуб на телевизоре LG Смарт ТВ: причины, что делать?
Усилить цифровой сигнал антенны телевизора в домашних условиях можно посредством последнего варианта, то есть с помощью зигзагообразной антенны. При этом усиление будет зависеть от числа квадратов. Таким образом вы сможете самостоятельно собрать конструкцию, потратив минимум средств.
Если у Вас остались вопросы или есть жалобы — сообщите нам
Задать вопрос
Антенный усилитель можно легко собрать дома, ориентируясь на схему. Он не будет требовать много энергии, не станет причиной помех, а частотный диапазон не превысит 900 МГц. Низковольтное оборудование с питанием от 3 до 5В будет потреблять не более 3 мА.
В чем состоит принцип работы подобного оборудования? Обратите внимание на схему, где изображен вход 1 – через него подается напряжение. Наличие резистора, отмеченному как R1 и подключенному ко входу 2, сместит напряжение на рабочую территорию. Выход 6 принимает входной сигнал, а усиленный будет снят с третьего узла и направится прямо в приемник.
Также рекомендуем ознакомиться с видео, где подробно описан порядок создания зигзагообразной антенны Харченко с усилителем – www.youtube.com/watch?v=3o0ZBUcL2f0.
Констелляционная диаграмма
К сожалению, в реальной жизни все далеко не так идеально. На пути доставки телевизионного сигнала от источника до конечного пользователя существует великое множество факторов, приводящих к искажению сигнала. В результате для определения качества сигнала все-таки приходится использовать все возможные параметры, в том числе констелляционную диаграмму.
ассмотрим подробнее процесс демодуляции сигнала с цифровой модуляцией. После синхронизации с входным сигналом на выходе блока демодулятора для каждого символа появляются два значения векторов I и Q.2 Пара векторов определяет точку на амплитуднофазовой плоскости, каждая из которых принадлежит одной клетке, определяющей конкретное значение символа. В идеальном случае точки ложатся точно в середины клеток.
В условиях воздействия шума точки получают некоторое смещение от ожидаемого положения, которое носит название вектора выходной ошибки. Если точка остается в пределах своей клетки, демодулятор принимает правильное решение, в противном случае символу присваивается значение соседней клетки, что к появлению ошибки во входном потоке данных. Добавление белого шума к входному сигналу приводит к «размазыванию» точки в пятно круглой формы (рис. 1). Наибольшая частота попадания точки — в центре, а к краю окружности она уменьшается. В этом случае все пятна имеют примерно одинаковый диаметр.
Теперь рассмотрим случай одновременного воздействия белого и фазового шумов на демодуляцию сигнала. На рис. 2 приведена констелляционная диаграмма для сигнала с добавлением паразитной фазовой модуляции (джиттер фазы), из которой видно, что фазовая модуляция приводит к большему отклонению точек от центра клетки с увеличением длины вектора. В результате вероятность возникновения ошибки при декодировании точек в углах констелляционной диаграммы резко увеличивается. При этом значение MER уменьшается не так сильно, потому как смещение для точек ближе к центру диаграммы незначительное.
Ситуация ухудшается еще сильнее в случае, если кроме фазовой модуляции присутствует компрессия сигнала, появившаяся при прохождении им активных устройств в зоне нелинейности их передаточной характеристики. Вершины длинных векторов смещаются к центру констелляционной диаграммы, в результате чего вероятность ошибок для этих векторов увеличивается еще значительнее. На значение MER такие искажения также не оказывают большого влияния.
Ниже приведены результаты моделирования трех перечисленных ситуаций: измерение сигнала QAM-256 в случае воздействия только белого шума, белого шума и фазовой модуляции и белого шума одновременно с компрессией амплитуды сигнала. Три соответствующие констелляционных диаграммы представлены на рис. 3.
На следующей диаграмме (рис. 4) представлены три кривые зависимости параметра BER при изменении отношения сигнал/шум во входном сигнале. Синяя линия соответствует первому случаю, когда во входном сигнале присутствует только белый шум, фиолетовая — белый шум и фазовая модуляция и, наконец, зеленая — белый шум и компрессия.
Рис. 4. Кривые зависимости параметра BER при изменении отношения сигнал/шум во входном сигнале
Видно, что при низких значениях сигнал/шум линии практически совпадают, но с увеличением параметра они начинают расходиться. Наконец, на последнем графике (рис. 5) приведена зависимость параметра MER при тех же условиях. Из графика видно: при соотношении сигнал/шум 36 дБ при добавления фазовой модуляции к входному сигналу MER уменьшается на 0,5 дБ, при этом значение BER ухудшается сразу на несколько порядков. Еще сильнее влияние компрессии, хотя она и едва различима на констелляционной диаграмме.
Это не единственные случаи искажения в исходном входном сигнале, которые приводят к сильному ухудшению BER при незначительном изменении значения MER. К аналогичным последствиям приводят фазовые искажения квадратур, амплитудный разбаланс векторов квадратур и т.д.
Правда, последние виды искажений возникают реже. Гораздо хуже ситуация с помехой импульсного характера. Такого рода искажения сигнала не редкость, поскольку существует большое количество устройств, излучающих радиосигнал, который может выступать в роли импульсной помехи для cигнала телевизионного.
При достаточно низкой частоте повторения и короткой длительности такая помеха практически не влияет на значение MER, но при этом может приводить к полной деградации BER. Ситуация осложняется тем, что подобную помеху сложно обнаружить. Часто не помогает и анализатор спектра. К примеру, если мешающий сигнал находится в полосе канала и при этом меньше по мощности на 20-30 дБ, то он маскируется полезным сигналом.
Особенности измерения уровня цифровых сигналов
Пожалуй, самым понятным для цифровых ТВсигналов, как и для аналогового телевидения, является параметр, характеризующий мощность сигнала. Но, тем не менее, довольно часто возникают вопросы, связанные с определением уровня цифровых каналов, поэтому немного внимания уделим и этому параметру.
Для аналогового телевидения измеряется уровень напряжения радиосигнала несущей частоты изображения. Для цифрового ТВ — «мощность радиосигнала в полосе канала» (такое название часто применяется в зарубежной литературе) или «фактический уровень напряжения радиосигналов с цифровой модуляцией в полосе частот распределения радиосигналов», как он называется в российском ГОСТ Р 52023 — «Сети распределительных систем кабельного телевидения». В России параметр принято обычно измерять в дБ относительно 1 микровольта (дБмкВ) как для аналоговых, так и для цифровых каналов.
Мощность3 радиосигнала для цифровых каналов измеряется как уровень напряжения немодулированного сигнала, который на нагрузке 75 Ом рассеивает мощность, эквивалентную мощности сигнала измеряемого канала.
При измерении уровней сигналов с помощью специализированных телевизионных измерителей или универсальных анализаторов спектра следует учитывать, что в аналоговых каналах характер сигнала — узкополосный, то есть основная часть мощности канала сосредоточена в довольно узком частотном диапазоне, а цифровые каналы характеризуются равномерным распределением мощности в полосе канала. В основе работы измерителей уровня лежит принцип селективного вольтметра. То есть в спектре радиосигнала выделяется (отфильтровывается) определенная частотная полоса, а затем измеряется напряжение сигнала, попавшего в эту полосу.
Если при измерении уровня узкополосного сигнала ширина его спектра заведомо меньше полосы измерения4, уровень измеряемого сигнала будет постоянным при изменении полосы измерения в пределах канала. Ситуация меняется при измерении широкополосных сигналов, каковыми являются радиосигналы цифрового телевидения. В этом случае чем шире полоса измерения прибора, тем выше уровень измеряемого напряжения. На рис. 6 представлена спектрограмма частотного диапазона с несколькими телевизионными каналами с аналоговой и цифровой модуляциями.
Спектрограмма была снята с помощью прибора с полосой измерения 230 кГц. На первый взгляд, уровни цифровых каналов ниже аналоговых более чем на 10 дБ. Однако для аналогового канала S20 уровень (Uan) можно определить по спектру как 66 дБмкВ. А для определения мощности сигнала цифрового канала S23 необходимо применить следующую формулу:
Uцк = Uизм + 10lg(Вц/Виз) + К,5
где Uцк — искомая мощность цифрового канала;
Uизм — уровень напряжения измеренный в центре полосы канала; Вц — полоса частот, занимаемая цифровым каналом; Виз — полоса измерения прибора;
К — поправочный коэффициент, компенсирующий погрешности измерения6.
Подставив исходные данные в формулу, получим:
US23 = 53 + 10lg(7,5/0,23) + 1 = 69 дБмкВ.
Таким образом, на самом деле уровень мощности канала S23 на 3 дБ больше, чем S20.
В режиме измерения уровня специализированные телевизионные приборы автоматически производят такой пересчет цифровых каналов с учетом их полосы и отображают их мощность корректно. Но при работе в режиме анализатора спектра и при измерении приборами, не рассчитанными на работу с цифровыми каналами, надо помнить об этой особенности. Такой метод измерения мощности канала в одной частотной точке дает достаточно точный результат только в случае достаточной равномерности АЧХ в полосе канала.
Как усилить сигнал цифрового ТВ своими руками для 20 каналов
Как усилить сигнал цифрового ТВ собственными силами для стандартных цифровых 20 каналов:
- Измените положение антенны. Важно, чтобы она была направлена в ту сторону, где расположена вышка.
- Использование усилителя.
- Добавление дополнительных телевизионных антенн.
- Обратите внимание на помехи – устраните металлические предметы.
- Проверьте кабель, возможно он требует замены.
Ошибка 400 в Ютубе на телевизоре Samsung Smart TV: причины, что делать?
Подбор коэффициента усиления
Представленный критерий отвечает за прием и расшифровку входящего сигнала с конкретным качеством. При этом показатель усиления зависит от значения КУ. При подборе важно учитывать – мощность усилителя должна превышать параметр антенны. Иначе он не принесет должного результата, и вы не заметите улучшенное качество.
В основном для DVB-T2 выбирают КУ 32 дБ. Такого показателя будет вполне достаточно для кабеля, длина которого не превышает 32 метров. Но, также не менее важным является выбор самой антенны. Учтите – при недостаточном уровне сигнала, усиление вызовет большие шумы.
Дополнительно вы можете увеличить длину кабеля, но это приведет к ослаблению входящего сигнала. Подобрать наиболее точный показатель коэффициента нельзя. Но, вы можете узнать примерное значение.
Куда направить антенну для приема цифрового сигнала
Чтобы верно определить расположение телевышек воспользуйтесь официальным сайтом – карта.ртрс.рф. Перейдя на страницу, вы увидите карту со всеми ретрансляторами страны, включая зоны покрытия. В поисковой строке, расположенной сверху, введите город проживания. На карте появятся изображения со всеми вышками в данной области.
Нажмите на населенный пункт и ознакомьтесь с расстоянием расположения ретрансляторов. Также будут продемонстрированы данные о частоте вещания, нумерация телеканалов, наличие мультиплексов.
Электропитание
Особенность подобного оборудования скрывается в отдельном от антенны питании. Сегодня усилители можно поделить на два типа в зависимости от питания:
- На 12 Вольт. Часто используются для дачи или комнатных антенн.
- На 5 Вольт. Подходит для непрерывных вещаний цифрового телевидения. Часто используется в спорт-барах.
Общие рекомендации по оценке качества цифровых каналов
Кабельные операторы, давно работающие с цифровым телевидением и имеющие большой опыт, советуют классифицировать состояние кабельной сети по трехбалльной шкале. Оценка три балла означает, что параметры каналов в сети соответствуют требованиям качественного приема и обладают достаточным запасом для стабильной, долговременной работы. От оператора при этом требуется только продолжение текущего контроля. Оценка два балла: параметры каналов также соответствуют требованиям качественного приема, но их значения не имеют достаточного запаса для обеспечения долговременной стабильной работы.
Такое состояние сети требует от оператора планового проведения работ для выявления источника проблем и принятия решения о методах восстановления состояния сети до трех баллов. И, наконец, третье состояние сети с оценкой один балл: параметры одного или нескольких каналов не отвечают требованиям качественного приема, что требует от оператора немедленных действий по ремонту или настраиванию сети для поднятия до второго или третьего уровня. Для оценки каждого канала необходимо измерить все параметры на абонентском отводе. Оценка присваивается в соответствии со следующими условиями.
Оценка 3 балла (выполняются все четыре условия): Уровень канала: соответствует расчетному уровню для данной точки сети с учетом неравномерности и принятой разницы между уровнями аналоговых и цифровых каналов.
MER: не меньше 36 дБ для модуляции QAM-256 и 28 дБ для модуляции QAM-64.
PreBER не превышает 1E7. PostBER: не превышает 1E9.
Оценка 2 балла (выполняются все четыре условия): Уровень канала: соответствует расчетному уровню для данной точки сети с учетом неравномерности и принятой разницы между уровнями аналоговых и цифровых каналов.
MER: находится в пределах от 34 до 36 дБ для модуляции QAM256 и от 26 до 28 дБ для модуляции QAM64.
PreBER: не превышает 1E6. PostBER: не превышает 1E9.
Оценка 1 балл (выполняется хотя бы одно условие):
Уровень канала: не соответствует расчетному уровню для данной точки сети с учетом неравномерности и принятой разницы между уровнями аналоговых и цифровых каналов.
MER: значение меньше 34 дБ для модуляции QAM-256 и меньше 26 дБ для модуляции QAM-64.
PreBER: значение выше 1E6. PostBER: значение выше 1E-9.
Если есть возможность контроля констелляционной диаграммы, необходимо добавить еще одно условие. Для оценки «3» форма констелляционной диаграммы не должна содержать ярко выраженных фазовых искажений, дисбаланса квадратур и искажений типа компрессии сигнала. При наличии подобных искажений измеряемому каналу должна быть присвоена оценка не выше двух баллов.
При указании значений параметров я исходил из предположения, что они измерены корректно, в пределах погрешности измерения прибора. Но при определенных условиях измеренные значения могут выпадать за пределы погрешности. В этом случае каналу может быть присвоена оценка, не соответствующая действительности.
Данная методика оценки качества не является, конечно, абсолютной и единственно верной. Каждый оператор может для себя выбрать границы значений параметров для оценки качества сигнала в соответствии с особенностями конкретной сети и отдельных каналов; при этом следует придерживаться общего подхода к методу проверки состояния сети.
——
1 Физический смысл этого параметра и формула для вычисления его среднеквадратичного значения рассмотрены в статьях серии «Цифровое кабельное ТВ. Часть 2. Состав головной станции, расчет ретранслируемого потока», «ТелеСпутник», ноябрь 2007 и «Цифровое кабельное ТВ. Часть 4. Сигнал DVB в распределительной сети. Использование альтернативных стандартов», январь 2008 (прим. ред.).
2 I= A cosφ, а Q = A sinφ где А – амплитуда QAM символа, а φ – фаза символа.
3 Имеется в виду мощностная характеристика, в качестве которой в телевидении принято использовать эквивалентное напряжение немодулированного сигнала, который по мощности равен сигналу телевизионному. Хотя в статье применяется термин «мощность цифрового канала», на самом деле подразумевается как раз напряжение этого эквивалентного сигнала (прим. автора).
4 Полоса измерения определяется полосой пропускания измерительного фильтра (прим. ред.).
5 Так эта формула выглядит в ГОСТ Р 52023 (прим. автора).
6 Коэффициент зависит в основном от параметров детектора (тип детектора и его постоянные времени) и прямоугольности измерительного фильтра. Определяется опытным путем и, как правило, составляет 13 дБ (прим. автора).
Андрей Конорев,
ведущий инженер ООО «Планар»
Как измерить TV сигнал – Эфирное цифровое телевидение
Настройка телевизионных антенн в условиях домашнего пользования, обычно производится с применением приемной и воспроизводящей бытовой аппаратуры, находящейся в квартире или доме.
Наличие ресивера и телевизора в этом случае является достаточным для определения уровня сигнала и его коррекции. Речь, конечно же, идет о примитивном согласовании элементов цепочки, включающей в себя антенну, кабель и приемную телевизионную аппаратуру.
Для более глубокой настройки специалистами применяются профессиональные измерительные приборы, которые позволяют во многом сократить время таких работ и упростить их выполнение.
Использование таких устройств дает возможность в считанные минуты определить уровень сигнала и настроить принимающую антенну, в соответствии с паспортными параметрами принимающей бытовой техники.
Проверка TV сигнала без телевизора
Методика измерения уровня телевизионного сигнала без использования бытовых приборов, заключается в подключении соответствующей аппаратуры в цепь между антенной и ресивером, либо напрямую к антенному кабелю. Таким методом измерительное устройство фиксирует уровень входного сигнала, и специалист определяет его параметры.
В соответствии с полученными результатами, настраивается встроенный приемный блок телевизора или же отдельно подключенного ресивера. Специалисту в этом случае, остается только правильно сориентировать приемную антенну и согласовать ее параметры с паспортными характеристиками приемной аппаратуры.
Обычно антенну направляют таким образом, чтобы получить максимальный уровень TV сигнала.
В тех случаях, когда поступающий телесигнал слишком слаб, тюнер не сможет его расшифровать, а сам телевизор не воспроизведет изображение и звук. В результате часто пользователю приходится думать о том, как усилить сигнал антенны. Разберемся в причинах проблемы и способах улучшения качества принимаемого эфирного телевидения.
Причины слабого сигнала
Цифровой сигнал, передаваемый ретранслятором, может оказаться слишком слабым для приема по следующим причинам:
- Большое расстояние до передающей вышки. К радиоволнам ДМВ-диапазона, на котором вещает цифровое телевидение, применим все тот же «закон обратных квадратов», как и для любого другого вида электромагнитного излучения.
- Поглощение волн атмосферой. Сам по себе воздух практически радиопрозрачен, но пыль, туман, влага могут рассеивать и отражать сигнал.
- Препятствия на пути радиоволны. ДМВ-вещание принимается в зоне прямой видимости, волны практически не огибают преграды. Поэтому, если между ретранслятором и принимающей антенной находится какой-то непрозрачный для радиоволн объект (здания, холмы, лес из высоких деревьев), в лучшем случае сигнал будет ослаблен. Это больше уместно в тех случаях, когда используются комнатные антенны: любые стены, даже тонкие, поглощают электромагнитные волны.
- Принимаются только отраженные сигналы. Если на прямой между антенной и ретранслятором находится объект, экранирующий радиоволны, принимать придется только тот телевизионный сигнал, который отразится от других объектов (например, соседних зданий). Такое излучение во много раз слабее того, которое изначально транслируется с телевышки.
- Некачественная приемная аппаратура: антенна с низкой чувствительностью, кабель с высоким сопротивлением и пр.
Одним словом, причин может быть масса. В большинстве случаев повлиять на них сложно или даже невозможно. Поэтому чтобы смотреть телевизор без зависаний и рассыпаний картинки, нужно подобрать правильный способ улучшения приема.
Способы усиления сигнала
Усиление сигнала ТВ-антенны достигается 5-ю способами:
- Использовать более качественную телеантенну, чем имеющаяся. В зависимости от конструкции здесь можно выиграть несколько децибелов усиления. Проверьте, правильно ли у вас подобрана антенна.
- Точная ориентация. Практически все устройства, работающие в ДМВ-диапазоне, имеют четко ориентированную диаграмму и наиболее эффективно принимают сигнал с одного направления. Даже поворот на 5–10 градусов способен дать серьезную прибавку к мощности сигнала.
- Заменить кабель. Если расстояние между антенной и телеприемником слишком большое, львиная доля мощности принятого сигнала теряется за счет сопротивления проводника. Избежать этого можно, используя фидер с пониженным сопротивлением (например, с центральной жилой не из омедненной стали, а из чистой меди).
- Переставить телевизор ближе к антенне. Кабель становится короче: в некоторых случаях даже 2–3 метра могут оказаться решающими. Уменьшение длины фидера позволяет избежать лишних потерь мощности сигнала.
- Использовать антенный усилитель.
На последнем варианте мы остановимся подробно, поскольку часто он оказывается решающим.
Преимущества и недостатки подключения усилителя
Подключение усилителя к антенне телевизора сулит ощутимые выгоды:
- резкое повышение мощности сигнала даже при использовании антенны прежней конструкции;
- больше не нужно беспокоиться о месте размещения телевизора. Особенно это заметно, если используется активная антенна, у которой усилительная плата является частью конструкции. В этом случае мощность сигнала, передаваемого на телевизор, оказывается настолько велика, что даже целая бухта кабеля не станет ощутимым препятствием. При использовании внешнего усилителя его потребуется разместить поближе к антенне, однако выигрыш в мощности и качестве сигнала все равно будет ощутим.
Если вы намерены подключать усилитель в домашних условиях, то нужно иметь в виду возможные недостатки и ограничения:
- Возрастает сложность и дороговизна оборудования. Даже если использовать простейший блок усиления, который можно спаять, потребуются новые элементы: крепеж, соединители, блок питания, специальные инструменты и пр. Но если вы любите работать своими руками, этот пункт проблемой не станет.
- Надо будет позаботиться о питании. Любой усилитель, по сути, превращает поступивший сигнал в его точную копию, имеющую большую мощность. Дополнительная энергия должна откуда-то браться — нужен внешний адаптер, подключаемый к электросети. В качестве источника питания подойдет приставка или телевизор, имеющие функцию активного антенного гнезда с передачей напряжения по фидеру.
- Не во всех случаях использование усиления является уместным. Для создания мощной копии нужен качественный оригинал, а если телесигнал забит шумом и помехами, то усилитель повысит и их тоже. В итоге даже фильтры и тюнеры не всегда смогут отсечь полезный сигнал от паразитных.
- Переусиление даст обратный результат. Если на антенный вход поступает слишком сильный сигнал, аппаратура посчитает его несуществующим и откажется воспроизводить. Поэтому в той зоне, где возможен уверенный прием на пассивную антенну, следует либо воздержаться от использования усилителя, либо понизить коэффициент мощности (если модель с регулятором).
Таким образом, для того чтобы усилитель телеантенны оказался полезен, необходим одновременно качественный и слабый сигнал.
Усиливать или нет? Ваше мнение:
Как выбрать подходящий
Выбирая усилитель, владельцу телевизора нужно учитывать следующие параметры:
- Необходимый диапазон усиления. Прибор может усиливать отдельно ДМВ и МВ (это полезно, если есть местные станции, передающие аналоговый телесигнал в этом диапазоне), может быть широкополосным, то есть работающим с несколькими диапазонами (однако при этом неизбежны потери в качестве приема: универсальные усилители всегда хуже узкоспециализированных), а может быть многодиапазонным с несколькими блоками усиления для каждой области частот.
- Тип прибора. Усилитель может быть встроенным (то есть конструктивной частью активной антенны) либо внешним, подключающимся к кабелю.
- Тип питания. Подача напряжения на усилитель может осуществляться как по коаксиальному кабелю-фидеру, так и напрямую от внешнего блока питания. «Кабельные» приборы компактнее, зато усилители с отдельным питанием мощнее.
Схемы подключения
Подключить усилитель можно несколькими способами. Выбор зависит от имеющегося оборудования и возможностей пользователя.
Вариант № 1
Эта схема самая простая. Используется там, где надо усилить сигнал от комнатной антенны в квартире или от пассивной внешней (например, закрепленной на стене многоэтажки с помощью каркаса).
Подключение выполняется следующим образом:
- С помощью коаксиального кабеля антенна соединяется с внешним усилителем (желательно через грозозащиту).
- Через входные и выходные гнезда аналогичным способом подключаются друг к другу телевизор и усилитель.
- Адаптер питания усилителя подключается к электросети через бытовую розетку.
Если телевизор установлен в коттедже или дачном домике, а антенна вынесена на мачту, обязательно добавляйте дополнительный элемент – грозозащиту. Это устройство, работающее по принципу предохранителя, вставляется в разрыв коаксиального кабеля. Если происходит разряд молнии на антенну, грозозащита перегорает и разрывает цепь. В итоге менять придется только предохранитель, а не весь комплект аппаратуры, рискуя получить вдобавок пожар от короткого замыкания.
Если требуется к одной антенне подключить два телевизора, нужно дополнительно применить делитель (он же сплиттер SAP, на жаргоне телемастеров – «краб»). Это устройство подключается на участке кабеля между усилителем и телевизором и равномерно делит мощность сигнала между двумя каналами передачи. Для наземного цифрового вещания достаточно «краба» с рабочей частотой от 5 до 1000 МГц.
Но при этом надо помнить следующее:
- если усилитель получает внешнее напряжение на участке сети после делителя, проход питания не нужен;
- если же усилительное устройство запитывается от приставки или телевизора, нужен не сплиттер, а ответвитель (TAP), способный разделять напряжение, идущее вовне от сигнала, поступающего внутрь системы.
Количество подключенных объектов в этом случае зависит от числа выходных гнезд делителя. В магазинах телевизионной техники можно найти «крабы» на 8 подключений. Если требуется большее число приемников, придется строить телесеть с дополнительными разветвлениями, промежуточными усилителями и пр. Такая работа выполняется уже профессиональными телемастерами.
Вариант № 2
Если используется SWA (плата усиления на антенне с питанием по фидеру), схема будет выглядеть так.
Подключение производится в следующем порядке:
- Соедините кабелем антенну и сепаратор, отделяющий внешний сигнал от рабочего напряжения.
- Подключите блок питания. Это нужно, если усилитель не получает мощности от приемника или ресивера.
- Соедините сепаратор с ТВ-приемником.
Если надо подключить два и более телевизора, то сигнал после сепаратора можно пустить на разветвитель.
Вариант № 3
В том случае, если под рукой есть магистральный усилитель, то принцип разводки аналогичный прошлому, но с нюансами.
Соедините оборудование между собой в таком порядке:
- Подключите пассивную антенну к грозозащите.
- Сигнал, прошедший через предохранитель, идет на магистральный усилитель, а затем подается на блок сепаратора и далее на телевизор или приставку.
При необходимости далее подключается делитель на нужное число гнезд.
Ниже представлена короткая, но емкая видеоинструкция по правильной распайке всех компонентов.
Проверяем результат с помощью мультиметра
После того как схема разработана и подключена, имеет смысл провести ее испытание и проверить характеристики получившейся конструкции. Для этого необходимо иметь тестер – или любое другое аналогичное устройство.
Проверьте следующие параметры:
- Волновое сопротивление кабеля должно не превышать 75 Ом.
- Разница между оплеткой коаксиального кабеля и центральной жилой должна составлять несколько десятков Ом. Если прибор показывает «0», значит, произошел обрыв или короткое замыкание.
- При соединении центральной жилы и оплетки прибор должен показать бесконечность, то есть максимум шкалы. Но если и оплетка, и жила отсоединены от антенны и замкнуты друг на друга, результат должен оказаться нулевым.
Если все 3 теста пройдены, значит усилитель подключено правильно.
Распайка вcтраиваемого усилителя SWA
Пассивную антенну можно усилить, установив на нее плату SWA. Самое тонкое место в этом процессе — распайка контактов. На видео показан весь процесс от выбора усилителя до его корректной установки. Просто следуйте рекомендациям и успех неминуем.
ПредыдущаяСледующаяПомогла статья? Оцените её Загрузка…
Источник: https://ProDigTV.ru/efirnoe/antenna/kak-usilit-signal